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Abstract. We report on a Monte Carlo study of so-called two-choice-spiral self-avoiding walks
on the square lattice. These have the property that their geometric size (such as is measured by
the radius of gyration) scales anisotropically, with exponent values that seem to defy rational
fraction conjectures. This polymer model was previously understood to be in a universality
class different to ordinary self-avoiding walks, directed walks (which are also anisotropic), and
symmetric spiral walks, in two dimensions. Our Monte Carlo study concurs with those previous
exact enumeration studies in that respect. However, we estimate substantially different values
for the scaling exponents associated with the geometric size of the walks. We give arguments
that explain this difference in terms of a turning point in the local exponent values, and in turn
explain this by arguing for the existence of probable logarithmic corrections. We also supply
numerical evidence supporting a conjecture concerning the angle of anisotropy in the model.

1. Introduction

The scaling behaviour of the thermodynamic, geometric and topological properties of
different types of long chain polymers in solution has been described by a wide variety of
models in statistical mechanics. One major group of models are lattice based and involve
various types ofself-avoiding walk(SAW) [1]. A large number of modifications, such as
the addition of various interactions (e.g. surface or intra-polymer) or particular restrictions
(e.g. directedness), have been made to the basic model to mimic either various physical
situations or to allow for easier analysis (such as exact solution). Some of these changes
in the basic model modify the scaling behaviour of system properties, and hence change
the universality class. For example, it is well known that restricting SAW on the square or
cubic lattices by only allowing steps in the positive axial directions, thus producing so-called
directed (or rather fully directed) walks (see [2] and references therein), changes the way
that the radius of gyration scales with polymer length.

In two dimensions a fairly complete study [3] of the universality classes of restricted
step SAW on the square lattice, without interactions, has recently been made. These models
are specified by the directions in which subsequent steps are allowed after steps in each of
the four lattice directions are made. For example, one might specify that after either positive
x- or y-axis steps only positivex- or y-axis steps can be made and that negative steps are
disallowed—this gives fully directed walks. Such rules might model oriented polymers in
complicated external fields. We note here that these ‘two-step’ walk models are by their
nature oriented. However, the main motivation of the study [3] was to further elucidate
the relationship between the symmetries of the lattice models and their universality classes.
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Figure 1. The three restricted two-step SAW rules which fall into the ASSAW class: rules (g),
(h) and (i).

This work based its conclusions on previous analyses of various cases already considered in
the literature and exact enumeration/series analyses. The universality class was delineated
by mainly considering the mean square end-to-end distance〈R2

e 〉(N) scaling of these walk
models with walk lengthN ; this being a measure of the size of the model polymer similar in
behaviour to the radius of gyration. The associated exponent is denotedν and one expects

〈R2
e 〉(N) ∼ AeN2ν asN →∞. (1.1)

For SAW without restriction in two dimensions it is expected thatν = 3
4 [4]. Fully directed

walks (DW) [2] are anisotropic with exponents for mutually orthogonal directions given as
ν‖ = 1 andν⊥ = 1

2. There are various quasi-one-dimensional and zero-dimensional models
with exponentsν‖ = 1, ν⊥ = 0 andν‖ = 0, ν⊥ = 0 respectively.

Importantly, there were two other universality classes associated with two-step restriction
models, such as considered in [3], that have been found. These force some type of spiralling
behaviour on the typical configurations. First, there is the exactly solved spiral SAW
(SSAW) model [5] with

〈R2
e 〉(N) ∼ AN log(N) asN →∞. (1.2)

Secondly, there are several models [6–8, 3] that come under the general titleanisotropic
spiral walks (ASSAW) that have been argued to scale anisotropically, withν⊥ = ν‖/2,
although the values of the exponents have been found not to be those of the directed
class. The latest series analysis estimates [3] gaveν‖ = 0.845(5). These models have the
distinction of being SAW models in two dimensions where no simple rational fractions have
been either calculated or conjectured for the exponent values. As they are not rotationally
invariant they cannot be described by a conformal field theory, and share this property, and
the former one concerning the possibility of irrational exponent values, with the problem of
directed percolation [9]. The fact that both these models are non-trivially anisotropic (that
is, do not simply act one-dimensionally in one direction) make them interesting cases for
investigation.

The first models, that are now under the title ASSAW, were introduced by Manna
[6] under the names two-choice-spiral and three-choice-spiral walks. In figure 1 we give
a diagrammatic representation of the step rules for two-choice-spiral walks (our rule (i)),
three-choice-spiral walks (our rule (g)), and one further rule (rule (h)). Figure 1 is a subset
of figure 1 of [3]. The pictures are understood as thus: the heavy curves illustrate the
four possible directions for walk steps. The broken curves show the possible continuing
steps from each of those initial directions. For example, in the case of rule (h) a step in
the positivex-direction can only be followed by one in the positivey-direction, a step in
the negativex-direction can only be followed by one in the negativey-direction, while a
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step in the positive or negativey-direction can be followed by steps in the three remaining
directions respectively (not the positive or negativey-direction respectively). Note that
rules which are isomorphic to the three rules in figure 1 can be obtained by symmetry
transformations such as rotation by 90◦. Also, rule (h) can be obtained from rule (i) by
reversing the direction of orientation on the walk configurations (see [3] for a proof) and
so rule (h) is isomorphic to Manna’s two-choice-spiral walks.

Manna [6] utilized exact enumeration data up toN = 28 andN = 21 to analyse the
partition function (or number of configurations), and the average square end-to-end distance,
for the two-choice-spiral and three-choice-spiral walks respectively. This gave estimates of
the exponentγ and connective constantµ from the partition function scaling, and gave,
from the components ofR2

e (N) in various directions, the associated exponentν in each
of those directions. It was concluded that the dominant size exponentν in each model
was about 0.84 though one model was probably isotropic and the other anisotropic. This
was based on extrapolation of local exponent estimates against 1/N . The inclusion of a
particular confluent (multiplicative) logarithmic correction gave smaller exponent estimates.

Whittington [8] gave a proof for the values of the connective constants of the two
models which was also subsequently verified numerically to high accuracy [7]. Guttmann
and Wallace [7] extended the exact enumerations toN = 40 andN = 30 for the two-choice-
spiral walks and three-choice-spiral walks respectively. They [7] considered the possibility
that the partition function scaling had a different form than had previously been assumed
and reanalysed the global (dominant) end-to-end distance scaling by carefully considering
corrections-to-scaling. They found that no consistent confluent logarithmic corrections could
be attributed to the end-to-end distance scaling of the two models. They found the dominant
scaling exponentν to be 0.855(20).

Recently, it was the work of Guttmannet al [3] that showed that the two-choice-spiral
walk and three-choice-spiral walk models of Manna [6] were in the same universality class
since they were both anisotropic, with the size along the minor axis scaling at half the rate
as the size along the major axis. In fact, they argued that the angle of anisotropy could be
calculated exactly using a random walk argument, building on the idea of Whittington [8].
The angle they found for the two-choice-spiral case was

θ2c = arctan((3−
√

5)/2) ≈ 0.364 863 828 113 483 1817≈ 20.905◦. (1.3)

They [3] also discussed the relationship between the symmetry of these rules and their
universality class. The exact enumerations were extended slightly with the maximum
lengths enumerated beingN = 44 for two-choice-spiral walks (rule (i)) andN = 32
for three-choice-spiral walks (rule(g)). The revised estimate for what was now denotedν‖
for the ASSAW class was 0.845(5) as mentioned above.

It was noted in [3] that the differential approximants used in the analysis to obtainν‖ did
not behave well. Hence the question remains as to whether the estimate quoted above for
ν‖ encompasses the true value. To add to this uncertainty we now reiterate the point that,
in the case of the SSAW, analysis of short series can lead to erroneous results: the local
exponent estimates contain aturning point, which provides misleading extrapolates. With
a relatively short series even the most sophisticated series analysis methods have difficulty
predicting the correct results. The reason for this largeN turning point in the SSAW
case is the competition of a confluent logarithmic correction and the dominant power law.
Given these considerations a Monte Carlo study that samples very long walks compared
to the enumerations is one way to help settle the question of the universality class and
exponent values for ASSAW. This paper describes the results of such a study: namely, we
have simulated one model in the ASSAW class, that being rule (h) (which is isomorphic,
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Figure 2. A typical configuration of rule (h).

as explained above, to Manna’s two-choice-spiral walks). Figure 2 illustrates a typical
configuration of rule (h) walks.

To simulate ASSAW we have developed a novel Monte Carlo algorithm which is an
adaptation of the pivot algorithm for ordinary SAW [10, 1]. This can be simply described
as an inhomogeneous pivot algorithm that obeys the rule chosen with the addition of local
moves. This algorithm is explained in section 2, along with a proof that the algorithm is
ergodic. This algorithm allowed us to simulate walks up to lengthN = 12 800 with good
statistics. The technicalities of this procedure are explained, and the raw results obtained
are given in section 3. The equivalent total CPU time on a DEC Alpha 500/266 was about
1 year. From the statistics generated and subsequent analysis we argue that indeed ASSAW
is a separate two-dimensional universality class but that the exponent estimates previously
obtained are not accurate, despite their precision, and that rather

ν‖ = 0.955(20). (1.4)

A combination of strong power law corrections with a probable confluent logarithm term in
the scaling form of theR2

e,‖(N) may explain the misestimation of the series since we show
that their is a turning point in the local exponent estimates nearN ≈ 150. We also verify
the angle of anisotropy for this model is indeed as argued in [3]. Our methods of analysis
and subsequent discussion are given in section 4.

2. Algorithm

2.1. Inhomogeneous pivot algorithm

The description of the algorithm is given here for rule (h) ASSAWs but the algorithm can
actually be applied to the rule (g) or (i) ASSAWs as well. Given an arbitrary sizeN , our
Monte Carlo algorithm is designed to generate a Markov chain,(Xt )t>0, whose sample
space is the set of allN -step rule (h) ASSAWs,AN(h), and whose equilibrium distribution
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Figure 3. The two-allowed pivot-like Monte Carlo moves.

is given by

πω = 1

|AN(h)| (2.1)

for anyω ∈ AN(h). The ergodicity of this algorithm is proved in section 2.3.
Note that we assume each element ofAN(h) starts at the origin. We label the steps of

a walkω ∈ AN(h) with the integers 0, 1, . . . , N − 1 and each of these steps corresponds to
one of the elements of the set{(0, 1), (1, 0), (0,−1), (−1, 0)} (i.e. north, east, south, west).
The vertices of the walk are labelled with the integers 0, 1, 2, . . . , N .

The Markov chain,(Xt)t>0, starts at an arbitrary elementX0 = ω0 in AN(h). Then for
arbitrary t > 0 with Xt = ω, ω ∈ AN(h):

(i) a step labeli is chosen uniformly at random from the set{0, 1, . . . , N − 1},
(ii) a move type labelM is chosen uniformly at random from the set{I, II },
(iii) if M = I , then the walkω′ is constructed such that the zeroth to(i − 1)th and

the (i + 1)th to (N − 1)th steps ofω′ are the same as those ofω, and if theith step of
ω is (1xi,1yi) for (1xi,1yi) ∈ {(0, 1), (1, 0), (0,−1), (−1, 0)} then theith step ofω′ is
(1yi,1xi) (i.e. theith step ofω is reflected through the liney = x to obtainω′),

(iv) if M = II , then the walkω′ is constructed such that the zeroth to(i − 1)th
steps of the walk are the same as those ofω, and if theith to (N − 1)th steps ofω are
(1xi,1yi), (1xi+1,1yi+1), . . . , (1xN−1,1yN−1) then theith to (N − 1)th steps ofω′ are
(−1xi,−1yi), (−1xi+1,−1yi+1), . . . , (−1xN−1,−1yN−1) (i.e. theith to (N−1)th steps
of ω are each rotated 180◦ to obtainω′),

(v) in either case (iii) or (iv) above, ifω′ ∈ AN(h), that is if ω′ is self-avoiding and
rule (h) is satisfied, then the next walk in the chain is taken to beXt+1 = ω′; otherwise
Xt+1 = ω.

In order to determine, in (v) above, whetherω′ follows rule (h) it is necessary to consider
at most the(i − 1), i, and(i + 1)th steps,(1xi−1,1yi−1), (1xi,1yi), (1xi+1,1yi+1), of
ω (only two steps need to be considered ifi = 0 or i = n − 1). Thus one can simplify
the calculation by tabulatinga priori which of thesethree-step configurationsallow type
I and/or type II moves. Then, given the three-step configuration ofω at i, move M
can be rejected immediately if it is not one of the allowed move types for the three-step
configuration. Since the moves of types I and II change the location of the(i+1)th toN th
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vertices of the walk, all of these vertices must be considered in the self-avoidance check.
Figure 3 illustrates the types of allowed Monte Carlo described above.

2.2. Implementation

The algorithm described above was implemented in C and compiled in a 64-bit environment
using both Digital’s and Sun’s C compilers with maximum optimizations. Comparison with
unoptimized executables was made to check that the optimizations had not introduced any
errors.

To implement the algorithm described above we had to consider both memory
management and the generation of random numbers. For values ofN 6 1600, an array of
size(2N + 1)× (2N + 1) (one element for each possible lattice site which can be occupied
by anN -step ASSAW) was used to store the information about an ASSAW configuration.
In particular, the array element corresponding to a particular lattice site can be taken to be
1 if the ASSAW visits that site and 0 otherwise. Having the ASSAW configuration stored
in this way allows the self-avoidance check that is needed at step (v) of the algorithm to
be done efficiently; however, forN > 1600 the memory cost associated with this becomes
too great.

For N > 1600 we used a hashing algorithm to save on memory requirements, so that
the coordinates of the configuration were stored in a hash table. The basic algorithm chosen
was a modified UNIX ELF hash routine (see acknowledgments). Even with a hash table
size of 20 times the length of the walk the maximum memory allocation for the whole
program was about 27 MB.

In our simulations we began by using two different random number generators for
several lengths. The first was the routineranf() from the random number generator
packageranlib.c which utilizes the base code from [11]. This code is the implementation
of a mixed linear congruential generator algorithm [12], and is a package which has proven
to be comparatively reliable [13]. The second algorithm was written by Janse van Rensburg
and Gruner and is a mixed Weyl and lagged Fibbonaci generator of the type that was studied
by Margsaglia and Zaman [14]. It has a period of 21407 and has proven to be comparatively
reliable in various recent Monte Carlo simulations [15, 16]. As a further test we compared
answers using both generators and also using different seeds. These gave the same answers
within error bars and so we used the faster generator (the Marsaglia one) for the more
time-consuming longer length simulations.

2.3. Proof of ergodicity

In this section we prove that the algorithm described in section 2 is irreducible, aperiodic
and reversible and hence ergodic for all three of the classes of ASSAWs. Although the
algorithm in section 2 is only described for rule (h), the algorithm for the other rules is just
obtained by replacing (h) by either (g) or (i) in the description of section 2.

To show reversibility (i.e. ‘detailed balance’) for the Markov chain,Xt , generated by
the algorithm, we first note that each of the moves, type I or type II, is its own inverse.
Next consider two distinctn-step ASSAWsω1 andω2 in the same class.Xt is reversible
if the ‘detailed balance condition’ is satisfied, that is if the one step transition probabilities
satisfy

πω1P(Xt+1 = ω2|Xt = ω1) = πω2P(Xt+1 = ω1|Xt = ω2) (2.2)

whereπω is given by equation (2.1) (with (h) replaced by (g) or (i) depending on which
class is of interest). We show that this condition is satified next. Compare the sequence
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of steps which define each walk and look for the first step where they differ. Suppose this
step is the(i + 1)th step. If this is the only step where the two sequences differ and if the
steps can be made the same by reflecting one step through the liney = x thenω1 can be
obtained fromω2 by a type I move at vertexi and similarlyω2 can be obtained fromω1

by the same move. If instead the sequences differ at each step after theith vertex and it is
possible to make the two sequences the same by, for one of the walks, rotating each step
after theith vertex 180◦, thenω1 can be obtained fromω2 by a type II move at vertexi
and similarlyω2 can be obtained fromω1 by the same move. These are the only ways to
go from one walk to the other in one step. In the above mentioned cases, the probability
to go from one walk to the other in a single move is given by

P(Xt+1 = ω2|Xt = ω1) = P(Xt+1 = ω1|Xt = ω2) = 1

2N
(2.3)

and clearly equation (2.2) is satisfied. In all other circumstances it is not possible to get
from one walk to the other by a single move and hence

P(Xt+1 = ω2|Xt = ω1) = P(Xt+1 = ω1|Xt = ω2) = 0 (2.4)

and equation (2.2) is satisfied.
To show that the Markov chain is aperiodic we first considerP(Xt+1 = ω|Xt = ω) for

ω ∈ AN . If ω contains a vertexi such that the direction of the step leaving vertex(i − 1)
is east (or east, or west, or west, or south, or north) and the direction of the step leaving
vertex i is north (or respectively east, west, south, south, north) then it is not possible to
perform a type II move at vertexi and there is a probability of at least12N that a move
attempted on walkω will fail, that is P(Xt+1 = ω|Xt = ω) > 1

2N . Since every walk of
length at least three must contain at least one of the six possible ‘two configurations’ listed
above at some vertexi in the walk then forN > 3, P(Xt+1 = ω|Xt = ω) > 1

2N for all
ω ∈ AN and the Markov chain is thus aperiodic.

Theorem 2.1.A Markov chain generated by type I and type II moves is
(a) irreducible for the state space of all anisotropic walks in class g,
(b) irreducible for the state space of all anisotropic walks in class h, and
(c) irreducible for the state space of all anisotropic walks in class i

where the classes are as in figure 1 of this paper.

Proof. We focus on the proof of (b) and note that the proof of (a) is exactly the same except
that one starts with a walk in class (g). The modifications needed to make the proof work
for (c) are put in square brackets where appropriate.

To prove irreducibility for class (h) (class (i)) we show that it is possible to start
with any n-step self-avoiding walk in class (h) (class (i)),ω, and by a sequence of moves,
m1, m2, . . . , mp, of type I or II obtain a sequence of class (h) (class (i)) walks,ω1, ω2, . . . , ωp
with the last walk,ωp, equal to the straight walk,sN [s ′N ], having all its steps in the north
direction (east direction). For any walk,ω, the ith vertex of the walk is defined to be the
vertex at the end of theith step and its coordinates inZ2 are given by(xi, yi). The origin
is the zeroth vertex.

It is thus necessary to consider several cases. �

Case 1.Supposeω only has north and east steps. Ifω has no east (north) steps then
ω = sN [= s ′N ] and we are done; otherwise assume there is an east (a north) step at
vertex i ∈ [0, N − 1]. Sinceω contains only north and east steps, all the vertices in the
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walk with labels bigger thani are located in the quarter plane{(x, y)|x > xi + 1, y > yi}
[{(x, y)|x > xi, y > yi + 1}] and all the vertices in the walk with labels less thani are in
the quarter plane{(x, y)|x 6 xi, y 6 yi}. Thus we can successfully perform a type I move
at vertexi by changing the east (north) step at vertexi to a north (an east) step. We thus
obtain a new walk in class (h) (class (i)) with one less east (north) step. Continuing this
process, one can eliminate all the east (north) steps inω and eventually obtainsN [s ′N ].

Case 2.Supposeω has only south and west steps. Perform a type II move at the origin and
then we have a walk which satisfies case (1).

Case 3.Supposeω is not in case (1) or case (2). Define the top (bottom) vertex of an
n-step walk as follows. LetS0 be the set of vertices reached by the walk (including the
origin). Construct the subsetS1 ⊂ S0 such that they coordinate of every vertex inS1

has the maximum (minimum) value over all vertices inS0. The vertex inS1 which has
the maximum (minimum)x coordinate over all vertices inS1 is called the top (bottom)
vertex of the walk. For the walkω we denote the label of its top vertex byvt and the
label of its bottom vertex byvb. We note also that ifvt 6= N then it is always possible
to perform a successful type II move at vertexvt . In particular, sincevt 6= N , the step
leaving vertexvt is in the west direction and the step leaving vertexvt − 1 (if this is not
less than zero) is a north step; one can perform a type II move at such a vertex provided
the move leaves the walk self-avoiding. To see that the resulting walk will always be self-
avoiding we note that the vertices of the walk other than vertexvt are confined to the set
R1 = {(x, y)|x < xvt , y = yvt } ∪ {(x, y)|y < yvt }. A type II move results in the vertices of
the walk after vertexvt being moved into the set{(x, y)|x > xvt , y = yvt }∪{(x, y)|y > yvt }
which is disjoint from the setR1. Thus there can be no self-intersections as a result of a
type II move at vertexvt . Similarly, it is always possible to perform a type II move at
vertexvb if vb 6= N . There are now various possibilities.

(a) {vb, vt } = {0, N}. We claim that for this case the walk is in either case (1) (ifvb = 0
andvt = N ) or case (2) (ifvb = N andvt = 0). For example, supposevb = 0 andvt = N .
Assume thatω has either a south or a west step. Suppose the first step that is not north or
east is the step which leaves theith vertex of the walk.i > 0, since otherwisevb would
not be 0. The step leaving vertexi − 1 is thus either a north or east step neither of which
can be followed by a south step. Hence the step leaving vertexi is a west step and the
step leaving vertexi − 1 is a north step. In order to get from the end of the west step (i.e.
from vertex i + 1 with coordinates(xi − 1, yi)) to vertexvt = N (located in the region
{(x, y)|y = yi, x > xi} ∪ {(x, y)|y > yi}) one must use a sequence of west and south steps
followed by a sequence of east and north steps and avoid the first 0− i vertices of the walk
(located in the region{(x, y)|0 6 y 6 yi, 0 6 x 6 xi}). The only way to do this is to go
south west of vertex 0 but thenvb would not be 0. It is therefore not possible to have either
a south or west step inω.

(b) {vb, vt } 6= {0, N} and vt = N . Sincevb is not in {0, N}, the step leavingvb is in
the east direction and the step leavingvb − 1 is in the south direction. Perform a type II
move atvb. This results in a new walk which has its bottom vertexv1

b = N and its top
vertexv1

t < vb. If v1
t = 0 then we are in case (2). Otherwise, the step leavingv1

t is in the
west direction and the step leavingv1

t − 1 is in the north direction. Perform a type II move
at v1

t . This results in a new walk which has its top vertexv2
t = N and its bottom vertex

v2
b < v1

t < vb. If v2
b = 0 then we are in case (1). Otherwise, continue the process until we

end up with a walk which is in either case (1) or (2).
(c) {vb, vt } 6= {0, N}, vt > vb,vt 6= N . Perform a type II move atvt . This results in a

new walk which has either its top vertex,v′t , satisfyingv′t = N or else its top vertex hasy



On anisotropic spiral self-avoiding walks 4859

coordinate at least one greater than they-coordinate ofvt . Thus if we continue with this
procedure it must eventually end with a walk having top vertex equal toN . Once we have
vt = N then we are in case 3 (b).

(d) {vb, vt } 6= {0, N} and vb = N . Perform a type II move at vertex 0 and obtain a
walk in case 3 (b).

(e) {vb, vt } 6= {0, N}, vb > vt ,vb 6= N . Perform a type II move at vertex 0 and obtain a
walk in case 3 (c).

Since each move is its own inverse, the above argument is sufficient to show that one
can get from any walkω1 in the appropriate class to any other walkω2 in the same class
by a sequence of type I and type II moves. In particular, one uses the moves dictated by
the argument above to takeω1 to the appropriate straight walk. The argument above also
dictates a sequence of moves which would takeω2 to the straight walk. Reversing this
sequence of moves takes the straight walk toω2. Thus irreducibility is proved.

We note that these moves can also be used to yield an irreducible Markov chain for the
state space of all directed walks (rule (j) in GPO), however, an additional move is needed
to generate the set of all spiral walks (rule (d) in GPO reflected through the liney = x). In
particular, we need to introduce a type III move such that at a vertexi the step leaving it
can be reflected through the liney = −x and all other steps remain unchanged.

3. Monte Carlo simulations and results

The algorithm, realized by the implementation described in the previous section, was used
to simulate rule (h) ASSAW for the various values of lengthN listed in table 1, from
N = 44 up toN = 12 800. Values were spread on a logarithmic scale forN > 100 using
approximate factors of 21/3 moving up fromN = 100 toN = 400 and then 21/2 up to 6400
with the largestN value chosen being 12 800. Extra values at smallN were also chosen. In
particular, to test the algorithm and method as described below we simulatedN = 44—the
largest length for which exact enumeration data was known.

For each value ofN we first had to estimate the integrated autocorrelation (step) times,
tauto, for the quantities of interest. This time,tauto, is essentially the minimum number of
Monte Carlo steps after which effectively independent configurations are produced, with
respect to measuring those quantities. In our case we calculated the radius of gyration,
and other ‘size measuring’ quantities, only, so this timetauto was more-or-less constant for
all the quantities measured—we confirmed this. To find an estimate fortauto we started at
small lengths where very large samples could be chosen and made an initial guess of the
autocorrelation time (apart from on the first occasion this was based on the previous value
of N ). We made an autocorrelation analysis of this using the statistical package Statistica
to determine a revised estimate of the autocorrelation time. We then made a new simulation
to test this hypothesis. We also used the method of blocking [17] to corroborate this. AsN

was increased we noted the dependence oftauto onN , which was o(N), and made guesses
appropriately. Again we used the autocorrelation analysis and blocking analysis; although
it was over smaller samples, all of which were larger than 105. For some quantities this
analysis was carried out on the final data samples to check correlations (as we recorded the
whole time series of some of the quantities).

For smallN the time between samples (τsample: being a number of Monte Carlo steps)
was effectively chosen as several factors of the auto-correlation timetauto. We confirmed
that we did obtain independent samples using the autocorrelation analysis and blocking
methods. Using theseτsample the data collected was almost perfectly independent: figure 4
shows a blocking histogram and Statistica output using the appropriate chosen value of
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Table 1. The lengthsN simulated with the sample timesτsample and total sample sizeS of
independent configurations. ForN > 1130 samples were not quite independent and this was
accounted for in the calculation of errors.

N τsample S

44 440 16 777 216
50 500 16 777 216
60 600 16 777 216
70 700 16 777 216
80 800 16 777 216

100 1 000 16 777 216
130 1 200 16 777 216
165 1 400 16 777 216
200 1 700 16 777 216
250 2 000 16 777 216
320 2 400 16 777 216
400 3 000 8 388 608
560 4 000 4 194 304
800 5 000 1 048 576

1 130 3 000 1 048 576
1 600 3 500 1 048 576
2 260 4 500 524 288
3 200 6 000 524 288
4 520 8 000 131 072
6 400 10 000 131 072

12 800 20 000 131 072

sample time for that length. At largerN we chose to use a sampling time about the
autocorrelation timetauto. We corrected the underestimation of the size of the statistical
errors in quantities by utilizing the blocking analysis. This allowed us to find the appropriate
factor to multiply our raw statistical errors to take account of the fact that our samples were
not quite independent. This is possible because the blocking analysis produces a revised
estimate of the true statistical error. We tested this method thoroughly, and kept the values
for every sample of some of the major quantities calculated (in addition to keeping running
averages). The sample (step) timesτsampleare given in table 1. In generaltauto was roughly
proportional toN0.8−1.0 so our inhomogeneous pivot algorithm had a CPU time increase
roughly proportional toN1.8−2.0 for this problem. This is unfortunately not as good as the
standard pivot algorithm for ordinary SAW [1].

For small lengths a virtual lattice was stored in memory so that memory requirements
were increasing withN2, while for larger lengths a hashing routine (as explained in section 2)
was used to minimize memory usage which increased as a multiple ofN . However, this
meant that the algorithm was substantially slower at longer lengths (about a factor of 6).
With the sample Monte Carlo timesτsamplequoted in table 1 it took 3.3 CPU milliseconds to
produce an independent configuration of walk lengthN = 100, while it took about 100 CPU
seconds between samples in the simulations of the walks of length 12 800: these times were
estimated on a Dec AlphaStation 500/266. The simulations were performed on a number
of machines including a Dec AlphaStation 500/266, a Dec AlphaStation 250/4 266 and a
Sun Ultra 170 workstation.

For lengthsN < 320 to we used very large total sample sizes of independent
configurations, that is,S = 222 = 16 777 216. AsN was increased smaller sample sizes
were used to accommodate the longer running times. For the longest lengths we used sample
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Figure 4. The two plots illustrate output from a statistical autocorrelation analysis (left) and
via the renormalization blocking method (right). Data was taken from a run of lengthN = 100
walks sampling every 64 Monte Carlo steps. The autocorrelation histogram gives the average
correlation between each data sample and the successive data samples one apart, two apart etc.
The autocorrelation of sample 4 apart (= 256 steps) can be seen to be small so our sampling
time of 1000 is a good over-estimate. The blocking output illustrates the calculated error on
the parallel component of the end-to-end distance as a function of the blocking iteration. The
blocking method course grains the sample at each iteration. Theoretically the flat (within error
bars) section of the graph indicates that the uncorrelated regime has been reached. Here we use
a sample run of walks of lengthN = 100 where we sampled every eight Monte Carlo steps.
The x-axis indicates numbers of powers of two and so 1000≈ 27 × 8 can be seen to be at the
beginning of the flat regime and so represents an effectively uncorrelated sampling rate.

sizes ofS > 217 = 131 072 (see table 1). The 131 072 samples of lengthN = 12 800 took
about 150 CPU days on the Dec AlphaStation 500/266 and so accounted for just under half
of the total computer time of all runs.

During the simulation running averages were kept of various quantities associated with
the size of the configurations—for some quantities values were kept from each independent
configuration to check this independence (see above). Let us denote the vector position of
the N + 1 monomers (vertices) of a walk ofN steps as{rj ; j = 0, . . . N}. Let a be a
unit vector in the direction given by (1.3) andb be a unit vector in a direction orthogonal
to a so a · b = 0. The quantities calculated were the average square end-to-end distance
projections along the axes given by the theoretical anisotropy direction and its orthogonal:

〈R2
e,‖〉(N) = 〈((rN − r0) · a)2〉 (3.1)

and

〈R2
e,⊥〉(N) = 〈((rN − r0) · b)2〉 (3.2)

where the average〈·〉 is over the configurationsϕs of the sampleS so that{ϕs ∈ S; s =
1, . . . , S}. The total average square end-to-end distance is simply then

〈R2
e 〉(N) = 〈R2

e,‖〉(N)+ 〈R2
e,⊥〉(N). (3.3)

The variances of these quantities where also calculated so a statistical error was able to
be found from twice the standard deviation (as samples were essentially independent—see
above). The radius of gyration was calculated, that is,

〈R2
g〉(N) =

1

N + 1

N∑
i=0

〈(ri −Rc) · (ri −Rc)〉 (3.4)
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where the centre-of-mass for a configurationϕ is the vector

Rc(ϕ) = 1

N + 1

N∑
j=0

rj . (3.5)

The mean-square distance of a monomer from the endpointr0 was calculated as

〈R2
m〉(N) =

1

N + 1

N∑
i=0

〈(ri − r0) · (ri − r0)〉. (3.6)

We note that the mean square-distance of the centre-of-mass from the endpoint is given by

〈R2
c 〉(N) ≡ 〈(Rc − r0) · (Rc − r0)〉 = 〈R2

m〉(N)− 〈R2
g〉(N). (3.7)

A list of averages with error estimates againstN are given for〈R2
e,‖〉(N), 〈R2

e,⊥〉(N),
〈R2

g〉(N), and 〈R2
m〉(N) in table 2. We also calculated the full average moment of inertia

tensor (without standard deviations) about various positionsp, which is given in general
terms as the 2× 2 matrix

Tp = 1

N + 1

N∑
i=0

〈(ri − p) · (ri − p)I − (ri − p)(ri − p)〉. (3.8)

Here we use dyadic notation (that is,rr gives a tensor/matrix), andI is the identity (tensor)
matrix. In particular, we calculated the average moment-of-inertia tensor about the endpoint
p = r0 and about the centre of massp = Rc. We calculatedT in Cartesian coordinates
and in coordinates rotated to the symmetry axis given by (1.3). Note that the trace of these
matrices gives back the radius of gyration and mean-square distance of a monomer from
the endpoint:

〈R2
m〉(N) = Tr(Tr0) (3.9)

and

〈R2
g〉(N) = Tr(TRc ). (3.10)

From the average moment-of-inertia tensor,Tp, calculated about the centre-of-mass in
coordinates rotated to the theoretical symmetry axis we calculated a quantity that allowed
us to determine the veracity of the axis conjecture. To do this we diagonalized the resulting
matrix and considered the eigenvector associated to the largest eigenvalue: this vector has
components cos(θd) along the theoretical symmetry axis and sin(θd) perpendicular to it,
whereθd is the angle of deviation of the moment-of-inertia from the theoretical axis. After
simulation we were able to extract an estimate for

ηd(N) = sin(θd(N)) (3.11)

as a function ofN . A list of theseηd(N) values is given in table 3. The diagonalization of
TRc also allowed us to calculate the components of〈R2

g〉(N) in the moment of inertia axes
(that is, the finiteN estimates of the major and minor axes, rather than along the theoretical
axes). The components〈R2

g,major〉(N) and〈R2
g,minor〉(N) are given as the eigenvalues ofTRc .

These are tabulated in table 4.
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Table 2. Our estimates for〈R2
e,‖〉(N), 〈R2

e,⊥〉(N), 〈R2
g〉(N), and〈R2

m〉(N) with error estimates.
For N = 44 our Monte Carlo results can be compared with the exact enumeration data of
〈R2

e,‖〉(N) = 452.398 55 and〈R2
e,⊥〉(N) = 7.702 78.

N 〈R2
e,‖〉(N) 〈R2

e,⊥〉(N) 〈R2
g〉(N) 〈R2

m〉(N)
44 452.24(20) 7.701(5) 65.340(14) 200.06(6)
50 563.53(26) 8.559 7(58) 82.387(18) 250.765(83)
60 770.8(4) 9.955 9(67) 114.810(26) 346.24(12)
70 1 004.3(5) 11.321 4(77) 152.162(35) 455.01(16)
80 1 261.8(6) 12.654 1(87) 194.292(45) 576.36(21)

100 1 846.7(9) 15.247(11) 292.633(69) 855.75(31)
130 2 890.6(1.5) 19.028(14) 474.40(12) 1 363.27(51)
165 4 340.4(2.3) 23.275(17) 736.55(19) 2 081.31(79)
200 6 029.4(3.3) 27.415(20) 1 051.21(27) 2 929.8(1.2)
250 8 823.3(4.9) 33.170(24) 1 588.53(40) 4 355.8(1.7)
320 13 457.7(7.6) 40.980(29) 2 510.06(65) 6 758.8(2.7)
400 19 721(16) 49.682(50) 3 796.4(1.4) 10 055.7(5.8)
560 35 146(41) 66.416(94) 7 091.8(3.8) 18 329(15)
800 65 008(155) 90.18(26) 13 767(15) 34 649(59)

1 130 117 854(311) 122.16(36) 26 124(29) 64 200(120)
1 600 215 919(580) 166.19(49) 49 976(62) 119 950(230)
2 260 393 343(1 465) 224.46(96) 94 860(170) 222 780(600)
3 200 724 120(2 960) 304.5(1.2) 181 520(360) 417 500(1 300)
4 520 1328 030(11 750) 416.4(3.7) 346 000(1500) 776 600(4 500)
6 400 2469 170(21 300) 566.8(4.9) 663 200(2 900) 1466 400(9900)

12 800 8406 600(68 000) 1049.0(9.3) 2418 600(9 900) 5152 300(33 000)

4. Analysis and discussion

In the previous exact enumeration work [7, 3] the mean square end-to-end distance〈R2
e 〉(N)

and its components along the theoretical symmetry axis,〈R2
e,‖〉(N) and 〈R2

e,⊥〉(N), up
to N = 44 had been analysed assuming various possible asymptotic forms. The basic
assumption was a form of the type

〈R2〉(N) ∼ AN2ν asN →∞ (4.1)

for 〈R2
e,‖〉, 〈R2

e 〉 and also for〈R2
e,⊥〉2 (due to the anisotropy conjecture). Here we also

consider〈R2
g〉(N), and 〈R2

m〉(N) and extend our information up toN = 12 800. Implicit
in some of the series analysis via differential approximants [3] are various corrections to
scaling assumptions. On the other hand, direct assumptions were made on the possible
corrections to scaling in [7]. They obtained a similar answer to the differential approximant
analysis. In [7] local exponent values were obtained from

ν̂(N) = log(〈R2〉(N))− log(〈R2〉(N − 2))

log(N)− log(N − 2)
(4.2)

so as to test whether

〈R2〉(N) ∼ AN2ν(1+ c/N1) as →∞ (4.3)

or

〈R2〉(N) ∼ AN2ν(log(N))α asN →∞ (4.4)

produced better fits to the data. The first, (4.3), implies

2ν̂(N) ∼ 2ν + C/N1 asN →∞ (4.5)
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Table 3. The eigenvalues〈R2
g,major〉(N) and 〈R2

g,minor〉(N) of the moment of inertia tensor

evaluate around the centre of mass, and the minor component of the eigenvector associated with
〈R2

g,major〉(N).

N 〈R2
g,major〉(N) 〈R2

g,minor〉(N) ηd(N)

50 80.3548 2.0326 0.012 841
60 112.386 2.4244 0.010 813
70 149.345 2.8175 0.009 425
80 191.083 3.2097 0.008 340

100 288.639 3.9936 0.006 817
130 469.229 5.1683 0.005 346
165 730.012 6.5357 0.004 307
200 1 043.31 7.9007 0.003 587
250 1 578.68 9.8512 0.002 936
320 2 497.48 12.573 0.002 341
400 3 780.77 15.681 0.001 894
560 7 069.95 21.872 0.001 415
800 13 736.2 31.053 0.000 994

1 130 26 080.4 43.773 0.000 7613
1 600 49 913.8 61.726 0.000 5453
2 260 94 774.7 86.740 0.000 3963
3 200 181 397 122.21 0.000 3157
4 520 345 841 172.16 0.000 1476
6 400 662 970 241.87 0.000 1955

12 800 2418 146 477.59 0.000 1001

while the second, (4.4), implies

2ν̂(N) ∼ 2ν + α/ log(N) asN →∞. (4.6)

However, it was found that in the case of the form (4.4) that for two-choice-spiral walks
ν̂(N) approached the apparent limiting value from above. Hence this implied thatα > 0.
Although, correspondingly analysis for three-choice-spiral walks seemed to implyα < 0 so
no consistent confluent logarithmic correction could be implied for both models. The series
analysis then tended to support the form (4.3) with exponent 2ν = 1.69(1).

Before embarking on the description of our analyses let us first describe the possible
asymptotic forms with corrections to scaling that we have considered. First is the form (4.3)
above, which we shall refer to as ‘scenario 1’:

〈R2〉(N) ∼ AN2ν(1+ c/N1) asN →∞ (scenario 1). (4.7)

This would be the first choice for someone analysing a SAW problem. The possibility of
multiplicative logarithms would imply that

〈R2〉(N) ∼ AN2ν(log(N))α(1+ c/N1) asN →∞ (scenario 2) (4.8)

is the asymptotic form. Additive logarithmic corrections instead of power law ones give
two further possibilities:

〈R2〉(N) ∼ AN2ν(1+ d/(log(N))β) asN →∞ (scenario 3) (4.9)

and

〈R2〉(N) ∼ AN2ν(log(N))α(1+ d/(log(N))β) asN →∞ (scenario 4). (4.10)
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Let us now revisit the type of analysis described above for the previous series analysis.
We note the implied asymptotic forms of the local exponent estimatesν̂(N) of our scenarios
are: for scenario 1,

2ν̂(N) ∼ 2ν + C/N1 asN →∞ (4.11)

for scenario 2,

2ν̂(N) ∼ 2ν + α/ log(N)+ C/N1 asN →∞ (4.12)

for scenario 3,

2ν̂(N) ∼ 2ν +D/(log(N))β asN →∞ (4.13)

while scenario 4 gives

2ν̂(N) ∼ 2ν +D/(log(N))β + α/ log(N) asN →∞. (4.14)

As one can readily see, if the additive logarithmic correction exponentβ is close to or
smaller than 1 it will be virtually impossible for any analysis to differentiate it from a
multiplicative logarithmic correction. However, one can try to do two things. First one
can test scenario 1 by examining the corrections to scaling to see if they are so strong that
they must be logarithmic. Secondly one can test scenario 2 by demonstrating whether a
consistent value ofα can be associated with the data. We shall do this and in fact conclude
that the asymptotic form is not likely to be of either of the forms, (4.7) or (4.8). We
hence conclude that the data must follow a form of either of the type scenario 3, (4.9), or
scenario 4, (4.10), that is, with additive logarithmic corrections.

To accommodate the Monte Carlo data we widen our definition of the local exponent
by finding local estimateŝν(N) from linear regression analyses of log(〈R2〉(N)) against
log(N) over m consecutive values ofN given in table 2, using the various choices for
〈R2〉(N) given there. We considered various values ofm including 3, 4, 5 and 6, and
satisfied ourselves that the conclusions of the analysis below were robust to this change.
The analysis included the exact enumeration data where possible. Figure 5 illustrates our
local exponent estimates 2ν̂(N), usingm = 4, for 〈R2

e,‖〉(N), against 1/ log(N). Here,
the values of log(〈R2

e,‖〉(N)) on which the regressions were performed were groups of
four (m = 4) data points that successively overlap by two data points. More precisely,
the four points of largestN were considered (regression was performed to give a local
exponent estimate) then the two with largestN were dropped and another two of smaller
N added and another regression performed, and so on until it was not possible to continue.
Each regression gave a local exponent estimate. Each estimate was plotted against the
inverse of the average of log(N) over the four points in question, we denote this scale as
1/log(N). The error bars are simple statistical errors (two standard deviations) from the
regression analysis. The smallN data can be seen to fall on a reasonably straight line
on this scale: this being the exact enumeration data forN 6 44. Importantly however,
the exponent estimates from Monte Carlo do not continue to follow this trend and have
a turning point aboutlog(N) ≈ log(150). While the error bars become large it is clear
that most extrapolations will yield a value of 2ν substantially larger than 1.7. So our first
conclusion is that previous series analysis is not accurate since there is a turning point in
the effective exponent and that 2ν is substantially larger than 1.7.

We now consider similar analyses of〈R2
e,⊥〉2(N), 〈R2

g〉(N), 〈R2
m〉(N), 〈R2

g,major〉(N) and
〈R2

g,minor〉2(N) in comparison with that of〈R2
e,‖〉(N). Figure 6 shows local estimates 2ν̂(N)

of 2ν obtained from the four sources,〈R2
e,‖〉(N), 〈R2

m〉(N), 〈R2
g〉(N), and 〈R2

g,minor〉2(N)
plotted against 1/log(N) in the same manner as described above. This scale was chosen
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Figure 5. Local exponent estimate 2ν̂ from the exact enumeration data and Monte Carlo data of
〈R2

e,‖〉(N). They were obtained from local regressions over four points moving over the whole
range two at a time. The arrow approximately indicates the exact enumeration extrapolation.

with hindsight as the most appropriate to allow a consistent final estimate of 2ν from each
of the data sets. More precisely, if we extrapolate over 1/ log(N)1/2, 1/ log(N)2, 1/N1/3,
or 1/N say, the four extrapolations give widely different answers. Extrapolating linearly
on the scale, 1/log(N), over the last three points of each graph (which were obtained from
the top eight points of〈R2〉(N) data: N > 800) gives four estimates of 2ν. From these,
and leaving some allowance for systematic error by using different scales and different
regression analyses, gives 2ν = 1.91± 0.03. Remember that while this scale is more
appropriate than 1/N , or 1/

√
N say, it is only empirical and we cannot say that it is the

best scale, of course. We note that the total radius of gyration seems the best converged
quantity. Hence, the likely logarithmic correction rules out scenario 1. Also, since the sign
of the correction is not consistent it is unlikely that scenario 2 can hold unless there exist
further turning points for some of the quantities local exponent estimates (which may of
course occur since we have already seen one!). Hence, we might conclude that scenarios 3
or 4 are likely candidatesgiven that we have reached the asymptotic regime.

We have also tackled the question as to which scenario is likely to be correct
by examining ratios of pairs of the size-measuring quantities〈R2〉(N) such as
〈R2

m〉(N)/〈R2
e,‖〉(N). Such a quantity should converge to some constant with the same

corrections as the〈R2〉(N) quantities (unless some fortuitous cancellation occurs). For
example one possibility is

〈R2
m〉(N)/〈R2

e,‖〉(N) ∼ C (1+ g/(log(N))β) asN →∞ (4.15)

while another is

〈R2
m〉(N)/〈R2

e,‖〉(N) ∼ C (1+ h/N1) asN →∞. (4.16)
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Figure 6. Local exponent estimate 2ν̂ from the exact enumeration data and Monte Carlo data.
They were obtained from local weighted regressions over four points moving over the whole
range one at a time. From top to bottom they were obtained from〈R2

g,minor〉2(N), 〈R2
g〉(N),

〈R2
m〉(N), and〈R2

e,‖〉(N) respectively. On the axis the extrapolated estimate of 2ν is indicated
with error.

In this way we eliminate one of the free parameters in our fitting forms relative to considering
the 〈R2〉(N) quantities separately. We have compared (4.15) withβ = 1 to (4.16) with
1 = 1

2 and1 = 1. In fact we have examined both linear and quadratic fits in those
correction scales (forN > 800). Intriguingly the best scale is (4.16) with1 = 1

2 which
gives amplitude ratio estimates to two decimal places consistently. That is, we extrapolated
〈R2

m〉/〈R2
e,‖〉, 〈R2

e,‖〉/〈R2
m〉, 〈R2

m〉/〈R2
g〉, and 〈R2

g〉/〈R2
e,‖〉, and found constantsC that were

consistent with each other. While (4.15) withβ = 1 was not so well behaved we cannot rule
out the consistency of a quadratic fit, albeit with large error bars. Given that a quadratic form
of (4.16) with1 = 1

2 (that is, withN−1/2 andN−1 terms) is close to the correct asymptotic
form of the corrections (that is, power law corrections) the only way toreconcile this
with the previous evidence on extrapolating2ν̂ is to concede the asymptotic regime has not
been reached. It is therefore likely that combinations of logarithmic and power law (with
small exponent) corrections combine in this problem to make asymptotic analysis difficult.
Reflecting on our estimate of 2ν then gives us pause for concern, and implies that we should
increase the possible size of systematic error. We therefore conclude that 2ν = 1.91(4).

Finally, in figure 7 we have a plot ofηd(N) against 1/N0.9. The scale 1/N0.9 was
chosen to give a good linear fit over the data: note that there is no turning point feature in
this data and no evidence of logarithmic corrections to scaling. We note that 0.9 is close to
ν and one might expect corrections of 1/Nν to the major-axis-angle scaling. The line on
the figure is the line of linear best fit. It is clearly extrapolating to 0 within statistical error
(we find−0.5× 10−5 ± 2.0× 10−5 over the last 13 points, which are of the order 10−3)
and so we conclude that the theoretical angle conjectured in [3] does indeed hold.
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Figure 7. A plot of the minor componentηd(N) of the eigenvector associated with the maximum
eigenvalue of the inertia tensor againstN−0.9. This componentηd(N) is the sine of the angle
of deviation from the theoretical axis. The straight line is the line of best fit.

5. Summary

We have made extensive Monte Carlo simulations of so-called two-choice-spiral walks, also
known as ASSAW, so as to ascertain the scaling of the ‘size’ of the model polymer with
length. These results, for walks up to lengthN = 12 800, show that indeed the ASSAW
models form a distinct universality class, though with scaling exponents substantially
different to those previously estimated from the series analysis of exact enumeration data.
The major axis scaling exponent we estimate asν‖ = 0.955± 0.02. This is opposed
to previous estimates that differ by about 0.10. We explain the inaccuracy of the series
estimates by noting that there is a turning point in the local exponent estimates asN

increases, in the same way as there is for pure spiral walks (SSAW). This we believe is the
result of a combination of strong power law and logarithmic corrections to scaling.
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[2] Privman V andŠvrakíc N M 1989 Directed models of polymers, interfaces, and clusters: scaling and finite–

size propertiesLecture Notes in Physicsvol 338 (Berlin: Springer)
[3] Guttmann A J, Prellberg T and Owczarek A L 1993 J. Phys. A: Math. Gen.26 6615
[4] Nienhuis B 1982Phys. Rev. Lett.49 1062
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